Gaussian Mixture Reduction Using Reverse Kullback-Leibler Divergence

نویسندگان

  • Tohid Ardeshiri
  • Umut Orguner
  • Emre Özkan
چکیده

We propose a greedy mixture reduction algorithm which is capable of pruning mixture components as well as merging them based on the Kullback-Leibler divergence (KLD). The algorithm is distinct from the well-known Runnalls’ KLD based method since it is not restricted to merging operations. The capability of pruning (in addition to merging) gives the algorithm the ability of preserving the peaks of the original mixture during the reduction. Analytical approximations are derived to circumvent the computational intractability of the KLD which results in a computationally efficient method. The proposed algorithm is compared with Runnalls’ and Williams’ methods in two numerical examples, using both simulated and real world data. The results indicate that the performance and computational complexity of the proposed approach make it an efficient alternative to existing mixture reduction methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of latent mixing measures in nonparametric and mixture models

We consider Wasserstein distance functionals for assessing the convergence of latent discrete measures, which serve as mixing distributions in hierarchical and nonparametric mixture models. We clarify the relationships between Wasserstein distances of mixing distributions and f -divergence functionals such as Hellinger and Kullback-Leibler distances on the space of mixture distributions using v...

متن کامل

A Kullback-Leibler Approach to Gaussian Mixture Reduction

A common problem in multi-target tracking is to approximate a Gaussian mixture by one containing fewer components; similar problems can arise in integrated navigation. A common approach is successively to merge pairs of components, replacing the pair with a single Gaussian component whose moments up to second order match those of the merged pair. Salmond [1] and Williams [2], [3] have each prop...

متن کامل

Singer Identification in Polyphonic Music Using Vocal Separation and Pattern Recognition Methods

Pattern recognition tools: • Discriminant functions a set of linear/quadratic functions of the data; the functions are evaluated for each new observation, the observation is assigned to the class having the highest discriminant value • Gaussian mixture models trained by expectation maximization; find the class that maximizes the likelihood of the test observations (acoustic features of successi...

متن کامل

Self-Organization by Optimizing Free-Energy

We present a variational Expectation-Maximization algorithm to learn probabilistic mixture models. The algorithm is similar to Kohonen’s Self-Organizing Map algorithm and not limited to Gaussian mixtures. We maximize the variational free-energy that sums data loglikelihood and Kullback-Leibler divergence between a normalized neighborhood function and the posterior distribution on the components...

متن کامل

Model Confidence Set Based on Kullback-Leibler Divergence Distance

Consider the problem of estimating true density, h(.) based upon a random sample X1,…, Xn. In general, h(.)is approximated using an appropriate in some sense, see below) model fƟ(x). This article using Vuong's (1989) test along with a collection of k(> 2) non-nested models constructs a set of appropriate models, say model confidence set, for unknown model h(.).Application of such confide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1508.05514  شماره 

صفحات  -

تاریخ انتشار 2015